RAPID COMMUNICATIONS

PHYSICAL REVIEW E 75, 035204(R) (2007)

Fractional behavior in nonergodic reaction processes of isomerization
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We present numerical evidence of fractional behavior in reactions for a prototype model of three-degree-of-
freedom isomerization. The survival probability in the well exhibits two distinct ranges of time scales: one
where it decreases with a power law, and the other where it decreases exponentially. Trajectories corresponding
to power law decays exhibit 1/f spectra and subdiffusion in action space, and those with exponential decays
exhibit Lorentzian spectra and normal diffusion. The existence of these two types of behavior is explained on
the basis of nonergodicity in the network of nonlinear resonances (Arnold web) in the well, and connection
between the saddle and the Arnold web. Implications of the fractional dynamics are discussed in terms of

Maxwell’s demon in molecules.
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The time development of complex systems often deviates
from what we expect based on the conventional statistical
laws [1]; relaxation processes exhibit power law decays and
diffusion processes differ from the Brownian type. More-
over, power spectra show a 1/f dependence on frequency.
Research areas involving such fractional behavior extend
from fields of physics such as amorphous semiconductors
[2], fluid mechanics [3], and Hamiltonian systems [4,5], to
biophysics where long-time memories and anomalous diffu-
sion are observed for a variety of biomolecules [6-8]. Frac-
tional behavior is of interest also in econophysics [9] where
prices in stock markets, for example, show anomalous fluc-
tuation. The origins of such fractional behavior are attributed
to the existence of hierarchical structures and/or the impos-
sibility of separating characteristic time scales. These lead to
breakdown of the underlying assumptions of the central limit
theorem, giving rise to deviation from normal diffusive be-
havior. Thus, fractional behavior is expected to be ubiquitous
in a wide range of fields involving complex systems.

Considering the possibility of fractional behavior in reac-
tion processes opens a new frontier beyond the conventional
ideas of the statistical reaction theory. In the conventional
theory, reaction processes are supposed to be normal diffu-
sive motions [10]. This idea is based on the assumption that
the characteristic time scale for the reaction is much longer
than that for trajectories to lose their memories. Then, reac-
tion processes are regarded as being composed of many er-
ratic dynamical motions, leading to the Brownian type of
diffusion. However, recent studies on reaction processes cast
doubt on this assumption. For example, 1/f spectra are
found in simulations of water clusters [11,12], and power law
decays are observed in correlations of vibrational dephasing
[13]. These studies indicate that the basic assumptions of the
statistical reaction theory should be reexamined.

In particular, fractional behavior in reaction processes pre-
sents the possibility of Maxwell’s demon in molecules. This
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idea is based on recent studies where Maxwell’s demon is
discussed in terms of fractional behavior in Hamiltonian dy-
namics [14]. An important aspect of these studies is that the
problem of Maxwell’s demon is treated from a purely dy-
namical point of view without assuming the existence of a
heat bath. The demon is conventionally supposed to work
under thermal fluctuations [15,16]. Then, the only possibility
for the demon is to wait for rare fluctuations [17]. However,
if fractional behavior exists at molecular levels, the demon
can utilize long-lasting memories inherent in anomalous
fluctuations for sorting out molecules [18]. Thus, the exis-
tence of fractional behavior provides new resources with
which Maxwell’s demon can work. On the other hand, de-
cays of the exponential type lead to fast recovery of equilib-
rium, where Maxwell’s demon cannot operate. Therefore,
studies of fractional behavior in reactions offer a new arena
where possibility of information processing by molecules is
considered.

However, dynamical approach to the demon has been lim-
ited to billiards and low-dimensional maps [5], although 1/f
spectra have been found in systems of many degrees of free-
dom (DOFs) [4,11,12]. In this approach, it is supposed that
fractional behavior is caused by ‘“sticky regions” near tori
and cantori, creating a hierarchy of dynamical barriers [19].
However, it is not obvious whether the same mechanism
works in systems of more than two DOFs, since the dimen-
sion of tori is not sufficient to constitute dynamical barriers.
Therefore, fractional behavior in systems of more than two
DOFs presents a new problem in nonlinear physics. In par-
ticular, no studies exist where fractional behavior is found
for Hamiltonian systems describing reaction processes. This
leads us to seek fractional behavior in Hamiltonian systems
which are relevant to molecules. This will support more re-
alistic arguments about Maxwell’s demon in reactions.

Hamiltonian systems describing reaction processes have
potential minima and saddles. Minima correspond to stable
configurations of molecules, and saddles correspond to con-
figurations which lie between stable ones. Locally near
minima and saddles, a perturbative approach is possible as
follows. Around minima, the normal form theory offers a
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method to represent the Hamiltonian in terms of nonlinear
vibrational modes [19]. The normal form breaks down at
locations in phase space where nonlinear resonances takes
place, and enhanced energy transfer occurs among these
modes. In general, nonlinear resonances constitute a network
in action space (Arnold web), and resonance overlap causes
global chaos [20]. Thus, characteristics of the Arnold web
are important for intramolecular vibrational-energy redistri-
bution [21-23]. In particular, nonuniformity of the Arnold
web and distribution of resonance overlap are crucial for
fractional behavior. As for saddles, the normal form theory
has been recently developed based on geometric structures in
phase space called normally hyperbolic invariant manifolds
(NHIMs) [24-26]. The theory offers a sound foundation for
the concept of transition states in systems of many DOFs in
general. Moreover, reaction processes can be well described
by the theory at least near saddles [27]. The theory can be
applied to reactions ranging from atomic, molecular
[25,28,29], and cluster physics [30,31] to even celestial me-
chanics [32]. In the search for fractional behavior in Hamil-
tonian systems describing reactions, global aspects should be
taken into account; that is, dynamics near saddles and around
minima, and how they are connected [33]. Thus, we need to
combine the results obtained by applying the normal form
theory locally near saddles and minima.

In this Rapid Communication, we present numerical evi-
dence of fractional behavior in a model Hamiltonian system
of three degrees of freedom (3DOF) describing reaction dy-
namics. We show that the fractional behavior results from
nonuniformity of the Arnold web and the connection be-
tween the web and the NHIM around the saddle.

The model Hamiltonian corresponds to a 3DOF system
with a double-well potential. The process of going over the
saddle is regarded as an isomerization reaction taking place
with nonergodic dynamics in the well,
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Here ¢, is the reaction coordinate, and ¢; (i=2,3) are the
bath coordinates. The values of the frequencies are w,
=1.02, 0,=0.94, and w3;=1.04. The frequency w;=\/V2 is
the unperturbed frequency at the bottom of the well at g,
=1. We choose the coupling function and the parameters
(0=0.5, a,=0.1, a,=0.9, and b=0.5) so that the interactions
among the modes take place more in the well than near the
saddle. This is valid for energy values slightly above the
saddle energy [30]. In the well, H,, consists of nonlinear os-
cillators with actions J; (i=1,2,3), which are described by
elliptic functions. Their nonlinear frequencies are given by
®;=dHy/dJ; (i=1,2,3). Then, the following primary reso-
nances exist: @;=w,, @;=m3, and ®,=ws.

Initial conditions are chosen to be uniformly distributed
on the unstable manifold of the NHIM near the saddle with
energy value E=0.1, while the potential energy at the saddle
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FIG. 1. (Color online) Survival probability P(z,) as a function of
residence time z,. The log-log and the log-linear (in the inset) plots
are shown by solid lines. Two distinct ranges in P(z,) exist for
shorter and longer time scales, where the plots can be fitted by 1;0‘83
and exp(—0.00157,) (the dashed lines), respectively.

and the minimum is 0 and —0.125, respectively. Then the
residence time ¢, inside the well is estimated for each trajec-
tory in unit of the period #;=27w;. By adding the number of
trajectories with their residence times from 7, to infinity, we
obtain the number of trajectories which remain in the well at
the residence time #,. The ratio of this quantity to the total
number of the trajectories gives the survival probability
P(z,). In Fig. 1, P(z,) shows two distinct time scales: up to
about 100 cycles, P(r,) decays as .7, and, for longer time
scales, P(t,) decays as exp(—at,).

What is the origin of the coexistence of the two distinct
time scales in P(z,)? This results from the nonuniformity
feature of the underlying Arnold web, as shown in Fig. 2.
Here, the average location is plotted for each trajectory in
action space. The location is estimated each time the trajec-
tory crosses a surface of section (¢, =1 with p; >0), and their
average is taken over the residence time. In Fig. 2, the dif-
ferent colors represent trajectories exhibiting power law [or-
ange (gray)] and exponential [blue (black)] decays, respec-
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FIG. 2. (Color online) Average locations in action space. The
orange (gray) dots and blue (black) dots are average locations of
trajectories exhibiting power law and exponential decays, respec-
tively. The light green (light gray) line is a typical example of
trajectories exhibiting exponential decays.
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FIG. 3. (Color online) Diffusivity o(,%,) (black line) of J; as a
function of r—#; for trajectories exhibiting power law decays with
1,=60. Inset: the power spectrum of J,. Fitting o (,0) ~ (t—3)%*
and Spectrum ~ w=%%* are shown [dashed red (gray) line], respec-
tively. Note that similar behavior is also observed for other trajec-
tories showing power law decays.

tively. A representative trajectory (light green curve)
corresponding to exponential decay behavior and the primary
resonances are also displayed for comparison.

In Fig. 2, we can see that blue (black) and orange (gray)
points are distributed in different regions in action space.
This suggests that dynamical structures exist which prevent
trajectories from exploring the whole phase space. While
blue (black) points are spread around the resonance junc-
tions, orange (gray) points lie away from the resonance junc-
tions. Note that resonance overlap takes place near junctions
leading to fully chaotic motions. Thus, while trajectories cor-
responding to blue (black) points experience fully chaotic
regions, those corresponding to orange (gray) points do not.
These features do not change qualitatively when the energy
is changed moderately.

How do trajectories behave when they wander away from
fully chaotic regions? Figure 3 shows diffusivity in action
space and the Fourier spectrum of the autocorrelation of J;
for trajectories exhibiting power law decays. The diffusivity
in action space is defined by

oy(t.tg) = ([J() = T (1) 1»). (2)

where the mean square displacement of Ji(f) at time 7 is
averaged over an ensemble of trajectories. The ensemble is
composed of trajectories whose residence times are equal to
a chosen value (60 cycles in Fig. 3). Here, trajectories show-
ing power law decays exhibit subdiffusion in action space
with 1/f spectra. This implies that they experience hierarchi-
cal structures. To the contrary, trajectories showing exponen-
tial decays exhibit Lorentzian spectra [34]. Thus, the coex-
istence of dynamically distinct regions brings about the
difference in P(z,).

How do trajectories leaving from (approaching) the
saddle land on (depart from) the Arnold web? In other words,
what is the connection between the web in the well and the
NHIM around the saddle? Figure 4 shows how the local
diffusivity o(,1,) varies as trajectories wander around in
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FIG. 4. (Color online) Local diffusivity o(z,7,) as a function of
t—ty with three 7, for trajectories of exponential decays (1500<¢,
<2000). The red (dark gray), black, and green (gray) lines are
o(t,1y) for t5=3, 900, and 7,— 50, respectively. For 75=900, trajec-
tories move in fully chaotic regions showing normal diffusion.
Dashed lines show fitting (¢—1,)” for each ;. Inset: p in (t—1y)” as a
function of ¢,.

the web. The averages are taken over trajectories showing
exponential decays of P(z,). Here, the variation of diffusivity
is shown for three f, corresponding to three different regions
on the Arnold web, just after landing on the web, just before
departing from it, and a region intermediate between these,
respectively. In the inset of Fig. 4, the power p of the local
diffusivity o,(z,t,) = (t—1,)? is shown as a function of .
This indicates that trajectories of exponential decays travel
through regions of different statistical nature: subdiffusion
(just after landing on the web) — normal diffusion (moving
about the web) — subdiffusion (just before departing from
the web at t,). Moreover, local Fourier spectra correspond-
ingly change as 1/f— Lorentzian— 1/f [34]. This indicates
that trajectories leaving the saddle first visit regions remote
from the resonance junctions and exhibit subdiffusion. Some
migrate into regions near the junctions yielding local ergod-
icity while the others go back to the saddle directly showing
power law decays. Those showing local ergodicity migrate
back again into subdiffusive regions before returning to the
saddle. It takes a longer time to find a way out of the locally
ergodic regions. Thus, they have longer residence times than
those of power law decays.

In this Rapid Communication, fractional behavior is
shown for a 3DOF Hamiltonian system describing a proto-
type isomerization reaction. This fractional behavior is ana-
lyzed in terms of the coexistence of distinct dynamical re-
gions on the Arnold web, and how these regions are
connected with the NHIM. Note that similar fractional be-
havior has recently been found in isomerization of HCN
[34]. Hierarchical structures have also been observed experi-
mentally or numerically in other real molecules, e.g., spectra
of stimulated emission pumping for acetylene [35,36], and
potential energy fluctuation in liquid water [12].

Based on our results, we propose the possibility of a Max-
well’s demon system in molecules: The Maxwell’s demon
system is composed of two chambers, and a nonequilibrium
distribution is maintained between the two chambers for a
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fairly long time [5]. Suppose a system has a double-well
potential with the property that the survival probability
within each well exhibits power law decays with different
powers, and it takes a long time to establish equilibrium
between the two. This is a molecular version of the system
studied in [14]. Moreover, a dynamical ratchet could be con-
structed by connecting in sequence wells with nonuniform
Arnold webs (for a ratchet, see [37].) How fractional behav-
ior in classical and quantum dynamics corresponds is also
important [38,39]. The larger the number of degrees of free-
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dom, the more likely they will correspond [40]. We will dis-
cuss this elsewhere.
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